高中三角函數公式有哪些
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
和差化積公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
三角函數的相關知識
1.三角函數包括兩部分:三角形和三角函數,以及三角形分析。重點知識點包括:任意角度的三角函數;同角三角函數的基本關系;歸納公式;三角函數的圖像及其變換;三角函數的性質和應用:三角函數的求值和簡化:正弦和余弦定理;解三角形及其合成。
2.三角函數和三角函數包括任意角度及其三角函數,同角關系和歸納公式,正弦和正弦函數,互補和正切函數,三角恒等式變換和三角合成。注重基礎知識和技能,突出角度與代數、幾何、向量等知識點的聯系。題型難度為輕松或中等。
高中數學學習方法
1、課前預習:上課前要做預習,課前預習能提前了解將要學習的知識。
2、記筆記:指的是課堂筆記,每節課時間有限,老師一般講的都是精華部分。
3、課后復習:通預習一樣,也是行之有效的方法。
4、涉獵課外習題:多涉獵一些課外習題,學習它們的解題思路和方法。
5、學會歸類總結:學習數學記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。
6、建立糾錯本:把經常出錯的題目集中在一起。
7、寫考試總結:考試總結可以幫助找出學習之中不足之處,以及知識的薄弱環節。
高中數學學習方法與技巧
一、回歸課本,注重基礎,重視預習。
回歸課本,自已先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要扎扎實實,不要盲目攀高,欲速則不達。
二、提高課堂聽課效率,勤動手,多動腦。
現在學生手中都會有一種復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。此外還要特別注意老師講課中的提示,作好筆記,筆記不是記錄,而是將上述聽課中的要點、思維方法等做出簡單扼要的記錄,以便復習,消化,思考。例習題的解答過程留在課后去完成,沒記的地方留點空余的地方,以備自己的感悟.
三、以“錯”糾錯,查漏補缺
這里說的“錯”,是指把平時做作業中的錯誤收集起來。如果平時做題出錯較多,就只需在試卷上把錯題做上標記,在旁邊寫上評析,然后把試卷保存好,每過一段時間,就把“錯題筆記”或標記錯題的試卷看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三”,及時歸納。