數學之美讀后感600字作文
數學之美讀后感600字作文(精選篇1)
上個月去北京開會,順道拜訪了人民郵電出版社,合作多年的編輯陳冀康贈我一本《數學之美》,說一定是我喜歡看的類型。以前也在網上零散看過Google黑板報上吳軍先生的文章,對他的前一本書《浪潮之顛》也有耳聞,但沒有讀過。這次有機會集中閱讀他的文章,確實是一段美妙的體驗。
讀完這本書有一點強烈的感受:工具一定要先進。數學是強大的工具,計算機也是。這兩種工具結合在一起,造就了強大的google、百度、亞馬遜、阿里、京東、騰迅等公司。他們不是百年老店,但他們掌握了先進的工具。
掌握了先進的工具,必將獲得競爭優勢。如果你知道哪里有一群軟件工程師,維護著更大的一群計算機,那么不要猶豫,想辦法使用他們提供的服務,因為這會給你帶來優勢。所以我們使用Google的搜索和郵件,在亞馬遜、京東和淘寶上購物,用QQ和微博聯系朋友,使用銀行卡和網上銀行,利用交易終端在全球市場上進行各種交易……
人類歷史就是一部工具的進化史。石器、青銅、鐵器、火藥、蒸汽機、內燃機、電報、電話、電視、計算機、衛星、互聯網,工具的進步引領著文明的進步。新的工具不斷淘汰老的工具,就像互聯網視頻點播正在淘汰電視、微博正在淘汰報紙、電子書正在淘汰紙質書那樣。
但有一些古老的工具,今天仍有人在學習和使用,甚至在上面花費許多時間。毛筆就是這樣一個例子。今天學習掌握毛筆這種“落后的”工具,還有什么意義?其實我們在使用一些“落后的”工具時,主要是在學習工具背后的思想。書法和繪畫中蘊含的藝術審美的一般原則,經得起具體工具變遷的考驗。甲骨文、金文、石鼓文所包含的對空間構圖的理解,仍然值得現代人學習。思想工具是比實物工具更強大的工具。
工具組合使用,形成更強大的新工具。《數學之美》中提到的馬爾可夫鏈雖然是很強大的工具,但我在數學課上沒有聽老師提到過。這本書中給我印象最深的例子是余弦定理和新聞分類。余弦定理是中學數學,再加上一些不算很難的多維向量的知識,竟然解決了計算機新聞分類這樣的難題!
每一種工具的背后,是人們對世界的一種理解。蒸汽機和內燃機背后,是力學的世界。電報、電話、電視、計算機和互聯網背后,是信息的世界。數學是抽象的工具,是其他工具背后的工具。每一門學科要成為科學,都少不了數學。也許有一天人們會習慣,用數學工具來分析藝術。數學是一種語言,它源于具體的世界,又高于具體的世界。如果說語言是對世界的認識和描述,如果說數學是一種語言,那么它一定是最接近神的語言。看似毫不相關,卻又能描述萬事萬物。
學習數學有什么用?物理學家費曼當年在大一時提出這個問題,他的師兄建議他轉到物理系。今天,這個問題已不成為問題。具有扎實數學功底的人才正進入各行各業,例如金融業。我認識一個出版社的老總,他招應屆畢業生有一個條件:數學要好。
工具雖好,關鍵還要會用。最終要回到掌握先進工具的人。軟件算法工程師加上計算機集群,這是目前一流企業必需的裝備。正如馬克.安德森所說的,各行各業的一流公司,都是軟件公司。優秀的軟件算法工程師,是人才爭奪的焦點。這樣,我們就容易理解Google招工程師的要求。
對信息加工處理和傳遞的能力不斷增強,是知識經濟的特點。《數學之美》展示了Google如何運用數學和計算機網絡,帶領我們進入云計算和大數據時代。
知識經濟時代的工作,就是在各自的領域中進行科學研究。科學研究要大膽假設,小心求證。科學研究要量化。科學研究要有對比實驗。科學研究要有數學模型。科學研究要有田野調查。科學研究要有文獻查證。科學研究要有同行評議。《數學之美》向我們介紹了自然語言分析領域的科研方法和過程。
任何一個領域,深入進去都有無數的細節。有興趣的人不但沒被這些細節嚇倒,反而會興致勃勃地研究,從而達到令人仰慕的高度。吳軍先生向我們展示了數學和算法中的這些細節,也展示了他所達到的高度。值得我學習。
感謝吳軍先生分享他的知識和深刻見解,也感謝人民郵電出版社出了這樣一本好書。
數學之美讀后感600字作文(精選篇2)
《數學之美》,一個從事多年工作的谷歌研究員眼中的數學。令我大飽眼福的是,大學里面的數學知識竟能如此廣泛運用到了計算機行業中。
在語音識別、翻譯,還有密碼學領域,有著許多基于概率統計的模型和思想。當然,貝葉斯公式是基礎,應用到隱含馬爾科夫鏈模型,神經網絡模型。
在搜索中,一些相關性的計算,無不用到了概率的知識。在新聞分類中,用到了一些有關矩陣特征值、相似對角化的知識。當然,在圖像處理方面,矩陣變換可謂是無處不在。另外,在識別方面,有一些通信模型,涉及到了信道、誤碼率、信息熵。
最近剛開學也沒什么事,所以就想隨便找幾本書看一下,但最好別是那種太艱深晦澀的書。8月份一直到現在,吳軍寫的這本12年5月出版的《數學之美》一直盤踞京東、亞馬遜等各大網上商城科技類圖書的榜首,當然,還有早些時候出版的《浪潮之巔》也排在很靠前的位置。心想市場的力量應該能幫我挑出好書吧,于是就從圖書館借了一本來,一直到今天晚上把它給看完了。
因此想寫一點東西來總結、反思一下,反正剛開完班會也沒什么事干。
寫在前面的建議:如果你不討厭數學的話,強烈推薦這本書,網上也可以下到電子版,不過閱讀感覺上還是很不一樣的。
廢話就不多說了,《數學之美》其實是一本科普類的讀物,所面向的是接受過普通高等教育的人,完全不需要在特定領域有很深的造詣就可以看懂,大概懂一點線性代數、概率統計、組合數學、信息論、計算機算法、模式識別最好(雖然列舉了這么多,其實有些不懂也沒關系……),所以尤其適合信科的人看。內容大部分是和人工智能、計算機相關的,這并非我所學的專業,但作者比較擅長將看似復雜的原理用簡明的語言表達出來,所以可讀性還是很好的。
吳軍是清華大學畢業的,之前任職于Google,后來到了騰訊,這些文章都是發表在Google黑板報上的,后來經過了重寫,所以網上下載的和書本內容有所差異。由于吳軍本人是研究自然語言處理和語音識別的,所以統計語言模型的東西可能會多一點,不過我覺得這絲毫不妨礙全書數學之美的展現……感覺收獲還是挺多的,知識上的有一些,但更多還是思維方式上的。作者舉了很多例子試圖讓人明白很多看似復雜的高科技背后,基本原理其實是出乎意料簡單的(當然,必須承認第一個想到這些方法的人還是非常了不起的……)。比如高準確率的機器翻譯,看上去好像是計算機能夠理解各國語言,隱藏在背后的卻是很多具有大學理科學歷的人都非常清楚的統計模型和概率模型;再比如拼音輸入法的數學原理,早期的研究主要集中在縮短平均編碼長度,比如曾經流行一時的五筆輸入法,而現今真正實用的輸入法卻是有很多信息冗余、編碼長度比較長的拼音輸入法,作者從信息論和市場的角度做了簡單的闡述;又比如新聞的自動分類,許多非IT領域的人可能會認為計算機可以讀懂新聞并進行分類,而實際上只是特征向量的抽取、多維空間中向量夾角的計算,非常非常簡單,但凡學過一點線性代數的人絕對是一看就懂的……當然,完美的實現還需要考慮很多細節和現實的情況,但這并不是這本書所關注的地方,數學之美在于其簡潔而不是繁瑣。
除了對于具體信息技術的剖析之外,作者還花了很大篇幅來講一些杰出人士的成長過程,特別是把這些人的成長經歷和中國學生的成長經歷作對比。雖然作者并沒有明說,但字里行間多少流露出對于中國高等教育以及很多中國企業的批評,一是教育的功利性,缺乏寬松的獨立思考的環境,即使學了一堆理論也難有用武之地,自然也就缺乏創新性的成果;二是中國企業的短視,大部分都不舍得在新框架開發上投資,而是坐享學術界和國外企業的研究成果。
總結一下呢,《數學之美》事實上不能帶給你編程能力的提升,也沒法讓人的數學水平有顯著的提升,但它在很大程度上讓你跳出教科書式的繁瑣細節的束縛,能夠從更宏觀的角度來思考信息世界背后的數學引擎的運行原理,讓人明白看似很高級、復雜的東西背后其實并不如我們所想象的那樣復雜,而我們所學的“枯燥”的數學真的可以“四兩撥千斤”,改變億萬人的生活。
數學之美讀后感600字作文(精選篇3)
第8章里的“索引”,作者講到谷歌面試產品經理的一道題目:如何向你的.奶奶解釋搜索引擎。關于這個問題,好的回答據說是用圖書館的索引卡片做類比。
我奶奶是個文盲,一生為農,日出而作,日落而息。她很少看電視,更別說圖書館。所以用圖書館的例子,對我們來說,很生動;對她來說,很生澀。
我們村的田地是按照地形、土質和流水等來劃分的,計有一等地、二等地和三等地。一般情況下,一等地用來種水稻,二等地用來種菜,三等地用來種水果。
所以當我奶奶想要給我摘桔子的時候,她肯定不會從一等地或者二等地一塊地一塊地找過來,而是直接跑到三等地(一般就是山上)。
像這樣的索引,是基于腦子里的“數據庫”,因為田地不會很多,多了也來不及種,所以跟布爾代數沒什么關系。但是這樣解釋,我奶奶就會大概明白了。我奶奶生前一次電腦也沒用過,跟她解釋這些,唯一的意義是,她會覺得我沒有敷衍她,這會使她欣慰——如果有機會解釋的話。
楊小凱曾經說,如果張五常多加注重使用數學模型,那諾獎也許就拿下了。張五常對此不以為然,反以為傲,自詡當今世上只有科斯、阿爾欽和他才敢只用文字,不借助數學模型就在經濟學界占有一席之地。
當然,張五常也不是徹底否定數學的作用,他認為能夠用文字解釋的經濟學原理,不必使用數學對其復雜化。
數學在信息學和經濟學里都有廣泛應用,但是在信息科學方面,對數學作用大小的爭論就沒有經濟學那么大了。
我們常說搜索引擎的競價廣告,就可能經歷到第三方公司,通常他們宣傳自己是谷歌或者別的搜索引擎公司的代理商,然后通過不正當手段為客戶提高網頁的排名。谷歌在消除網絡作弊方面做了很多努力,通過修改排序算法來為搜索者提供更加準確實效的信息。
“作弊的本質是在網頁排名信號中加入噪音,因此反作弊的關鍵是去噪音。沿著這個思路可以從根本上提高搜索算法抗作弊的能力。”我們公司就是吃了這個虧,交了不少錢給第三方公司,結果算法一變,關鍵詞的排名從前三下降到前三頁沒影。
社交搜索正在雄起,但是如果想要在傳統的搜索引擎中占據有利排名,我想,第三方公司的技術水平是很關鍵的。
大學專業課里,數電總是要比模電簡單不少。
自然界里大部分的信號都屬于模擬信號。所謂模擬信號,是指時間和數值上都是連續變化的信號。在實際電路中,模/數轉換是一個很重要的過程,將預處理的模擬信號經過模/數變換為數字信號,然后進行數字信號處理。而數字化處理有很多優點,比如功能強大、抗干擾能力強、易集成化等。
簡而言之,如果沒有數學,就沒有數字信號處理的概念,也就無法進行信號的傳輸,而數字信號傳輸在大規模的集成電路里是必不可少的,這是通信成功的基本要求。
之前看到有人說如果高中看這本書,也許數學就是另一番天地,會有所突破。我不覺得,如果高中看這種書,我想,大多數人還是會對數學更加望而卻步。本書更適合通信電子這些專業的學生,在學習專業課的時候輔助閱讀,對理解通信原理、數電模電等都有更形象生動的想法。
數學之美讀后感600字作文(精選篇4)
確切的來說,《數學之美》并不是一本書,它是谷歌黑板報中的一系列文章,介紹數學在信息檢索和自然語言處理中的主導作用和奇妙應用,每一篇文章都不長,但小中見大,從看似高深的高科技中用通俗易懂的案例展示了數學之美,深深的吸引了我。
這一系列文章的作者是google公司的科學家吳軍。他畢業于清華大學計算機系(本科)和電子工程系(碩士),并于1993-1996年在清華任講師。他于1996年起在美國約翰霍普金斯大學攻讀博士,并于年獲得計算機科學博士學位。在清華和約翰霍普金斯大學期間,吳軍博士致力于語音識別、自然語言處理,特別是統計語言模型的研究。他曾獲得1995年的全國人機語音智能接口會議的最佳論文獎和年eurospeech的最佳論文獎。
吳軍博士于年加入google公司,現任google研究院資深研究員。到google不久,他和三個同事們開創了網絡搜索反作弊的研究領域,并因此獲得工程獎。年,他和兩個同事共同成立了中日韓文搜索部門。吳軍博士是當前google中日韓文搜索算法的主要設計者。在google其間,他領導了許多研發項目,包括許多與中文相關的產品和自然語言處理的項目,并得到了公司首席執行官埃里克.施密特的高度評價。吳軍博士在國內外發表過數十篇論文并獲得和申請了近十項美國和國際專利。他于年起,當選為約翰霍普金斯大學計算機系董事會董事。
正是他在信息檢索與自然語言處理領域中的一系列工作,使他講述了我所看到的內容-數學之美。
看了數學之美,立即聯想到了金庸小說中的武林高人,總是把一套大多數人都會的入門功夫使得威力無比,擊潰眾多敵者。東西放在那,它的威力如何,并鍵在于使用者,武術如此,數學同樣如此。
于我而言,語音視別是一類高科技,作為非專業人土,深覺高奧。但看完數學之美之后,頓感驚詫,原來如此深奧東西的解決方法自己也學過,并且理工科讀過大學的人都學過,那就是統計學中的條件概率p(a/b),即b事件發生條件下a事件發生的概率。
如果s表示一連串特定順序排列的詞w1,w2,…,wn,換句話說,s可以表示某一個由一連串特定順序排練的詞而組成的一個有意義的句子。現在,機器對語言的識別從某種角度來說,就是想知道s在文本中出現的可能性,也就是數學上所說的s的概率用p(s)來表示。利用條件概率的公式,s這個序列出現的概率等于每一個詞出現的概率相乘,于是p(s)可展開為:
p(s)=p(w1)p(w2|w1)p(w3|w1w2)…p(wn|w1w2…wn-1)
其中p(w1)表示第一個詞w1出現的概率;p(w2|w1)是在已知第一個詞的前提下,第二個詞出現的概率;以次類推。不難看出,到了詞wn,它的出現概率取決于它前面所有詞。從計算上來看,各種可能性太多,無法實現。因此我們假定任意一個詞wi的出現概率只同它前面的詞wi-1有關(即馬爾可夫假設),于是問題就變得很簡單了。現在,s出現的概率就變為:
p(s)=p(w1)p(w2|w1)p(w3|w2)…p(wi|wi-1)…
(當然,也可以假設一個詞又前面n-1個詞決定,模型稍微復雜些。)
接下來的問題就是如何估計p(wi|wi-1)。現在有了大量機讀文本后,這個問題變得很簡單,只要數一數這對詞(wi-1,wi)在統計的文本中出現了多少次,以及wi-1本身在同樣的文本中前后相鄰出現了多少次,然后用兩個數一除就可以了,p(wi|wi-1)=p(wi-1,wi)/p(wi-1)。
也許很多人不相信用這么簡單的數學模型能解決復雜的語音識別、機器翻譯等問題。其實不光是常人,就連很多語言學家都曾質疑過這種方法的有效性,但事實證明,統計語言模型比任何已知的借助某種規則的解決方法都有效。比如在google的中英文自動翻譯中,用的最重要的就是這個統計語言模型。去年美國標準局(nist)對所有的機器翻譯系統進行了評測,google的系統是不僅是全世界最好的,而且高出所有基于規則的系統很多。
這就是數學的美妙之處了,它把一些復雜的問題變得如此的簡單。
看到《數學之美》,在感嘆數學的美妙與神奇之處時,自然而然聯系到自己專業(地質工程而或巖土工程)中的數學應用。
現在找文獻,搜索期刊一大堆基于數學的專業文獻,灰色數學的、模糊數學的、非線性的、系統的,等等,這么多的數學的使用,促進了一大批的文章,但這些數學方法的應用究竟是發現了哪些問題?還是解決了實際問題嗎?還是僅發了文章,滿足了需求?現實是文章好發,用著難用,解決問題還得傳統的方法,那么是這些數學方法不行,還是用的太膚淺,根本沒發揮其威力來?如果沒有發揮出威力來,那怎么用?怎么發揮?
數學之美讀后感600字作文(精選篇5)
我是在讀了吳軍博士的《浪潮之巔》之后,發現推薦了《數學之美》這本書。我到豆瓣讀書上看了看評價,就果斷在當當上下單買了一本研讀。本來我以為這是一本充滿各種數學專業術語的書,讀后讓我非常震撼的是吳軍博士居然能用非常通俗的語言將自然語言處理等高深理論解釋的相當簡單。在李開復博士之后,吳軍博士又成為了目前備受矚目的具有深厚技術背景的作家。對于我來說,讀這本書有掃盲的功效,讓我知道了很多以前不知道的東西。我的想法是在研究生階段,不只局限于導師的研究方向,通過更加廣泛的涉獵知識,去尋找一個自己喜歡的研究領域。如果找到了這樣一個領域,那么我就讀博士。如果沒有的話,那么我想還是工作算了。
1、學科之間的聯系是如此的重要
全書主要是圍繞著吳軍博士所研究的自然語言處理方向來講述一些應用在這個研究領域的數學知識,用了很大篇幅講解了將通信的原理應用到自然語言處理上所取得的巨大成功。以前學習計算機網絡的時候,學過一個香農定理。對香農的認識就從香農定理開始,因為考研會考相關的計算題。看了這本書才知道,香農的《信息論》對今天的影響真的是不可估量。通過這樣一個過程,我也對以前的本科學校的學科建設產生了一些憂慮。對于培養計算機人才來說,無論是培養應用型人才,還是培養研究型人才,都應該與電子、通信有一定的交叉,這樣對學生思考問題的啟發與視野的開闊有著重要的作用。計算機本身就是從電子、通信、數學等學科中抽出來的新興的學科,在發展了多年之后,我們發現它仍然需要繼承一些傳統。回想自己的本科四年,上的更多的課時
語言類、技術類的課程,這些課程的確對提升學生的就業有很大幫助。但是我想說的是,一個忽視數學基礎、學科交叉的學校,他無法成為一所國內的一流大學。作為一個母校培養的學生,我深知改革的阻力與困難,但是我希望母校的計算機學院能越辦越好。我們現在已經培養出很多高薪優秀的技術人才,我希望將來也能培養出更多的研究型人才。
2、看起來很牛的東西卻用著難以置信的簡單數學原理
在整本書中讓我最為印象深刻的是解釋Google搜索的原理,居然就是簡單的布爾代數運算。這個的確讓我大跌眼鏡,我一直認為搜索時一個非常復雜而龐大的問題,其數學原理也是相當高深的,但是吳軍博士的解釋讓我大開眼界。與此同時也知道了Google為什么牛,牛在哪了。搜索的原理雖然非常簡單,但是搜索是一個需要對海量數據進行操作的工作。Google在海量數據的處理方面的確是相當先進的,MapReduce、BigTable等等一些技術的發明與應用使得Google在搜索上無出其右。目前分布式存儲、分布式計算、數據倉庫與存儲等研究領域近些年來的大熱也說明Google在引領研究方向上的超凡本領。
3、感謝概率老師的教誨
在大二的時候,有一個在我們學生中聲望很高的概率老師,他在課程即將結束的時候跟我們說我們將的是前幾章,這些事概率論與數理統計的基礎。對于你們計算機的學生來時,后面的章節才是最有用的,以后一定要好好的研究,弄上一兩個在你的畢業設計上就會讓你畢業設計提升一個檔次,有可能驗收你畢業設計的老師也不懂。我當時對他的話沒有特別在意,我只關心期末考試要考哪些題目,因為我那個學期的概率課基本上都在睡覺,只有他講笑話的時候不睡。我看《數學之美》后發現馬爾科夫鏈、貝葉斯網絡之后,對以前的概率老師充滿無限的敬意。我發現我們再本科階段學習的《高等數學》、《線性代數》、《概率論與數理統計》在計算機學科應用較多的要數概率論與數理統計,還有一門我學的不好的《離散數學》在計算機中也是有著舉足輕重的地位。我在看米歇爾的《機器學習》時也發現很多熟悉的概率論與數理統計的知識,這讓我不得不開始考慮重新彌補自己的數學短板。我的想法是在研一這一年把概率論與數理統計、線性代數、離散數學盡我最大的努力補一補,希望他們對我今后的學習有所幫助。
4、說說作者吳軍博士
吳軍博士寫的書對于學習計算機的學生來說,讀起來有種說不出的親切感。可能這跟他是技術出身的原因有關,流暢的文筆、質樸的文風也讓人讀起來很舒服。看高曉松在優酷上的《曉說》就知道,在硅谷有著眾多的華裔工程師,他們很多都來自清華、北大等國內的名牌大學,這些人在美國實現著自己的夢想。吳軍博士也曾是這其中的一員,我非常希望那些像吳軍博士一樣的牛人們能夠寫書或者來國內的大學做一些演講、論壇等等,開闊一下我們的視野,傳授一下做學問的經驗。與此同時,我也在想為什么我們國家那么多優秀的IT人才都去了美國。這個問題在我去蘋果公司在東軟信息學院組織的培訓過程中得到了答案,那個南京郵電的老師講了講中國為什么不像美國那么有創造力。我們中國人并不缺乏創造力,很多時候是我們所處的外部環境恰恰阻礙了創新。我想那么多優秀的清華北大學子紛紛到大洋彼岸的美國,正是被美國開放的學術環境、創新氛圍所吸引,每個人都有自己的夢想,他們去美國也是為了能實現自己的夢想。以前都覺得他們是不愛國,現在長大了,對于這個問題看得更清楚了一點。我想說我們的祖國在經歷了改革開放30多年的飛速發展之后,目前正處于一個關鍵和脆弱的時期。我們靠著人口紅利取得了巨大的成就,我們能不能憑借人才紅利取得更大的成就還是未知。希望有更多的人才能像李開復博士、吳軍博士那樣,為我們這個民族青年的成長和國家發展做出貢獻。
